6.11. PRACA KONSTRUKCJI W ZAKRESIE SPRĘŻYSTO-PLASTYCZNYM. NAPRĘŻENIA RESZTKOWE. SPRĘŻYSTO-PLASTYCZNE ZGINANIE BELKI. UPLASTYCZNIENIE WOKÓŁ OTWORU W TARCZY

6.11.1. Wprowadzenie

Większość ciał stałych wykazuje, przy odpowiednio dużych obciążeniach, zdolność do odkształceń plastycznych, tzn odkształceń trwałych, nie znikających po zmianie obciążenia. Podstawowa teoria dotycząca plastycznego płynięcia materiałów przedstawiona została w [1, 2].

Teoria plastyczności opiera się – podobnie jak teoria sprężystości – na założeniu continuum materialnego oraz jednorodności i izotropowości ciała, nie zakładając natomiast liniowości fizycznej, ponieważ interesuje się zjawiskami zachodzącymi poza granicami ważności prawa Hooke'a. W zagadnieniach technicznych często korzystamy z dodatkowych założeń geometrycznych lub fizycznych, jak np. hipoteza płaskich przekrojów.

W większości konstrukcji odkształcenia trwałe, aczkolwiek większe od sprężystych są niewielkie (kilka procent). W takich zagadnieniach sprężysto-plastycznych można z techniczną dokładnością stosować regułę wymiarów początkowych (zasada zesztywnienia) przy tworzeniu równań równowagi. Ze względu na nieliniowe związki pomiędzy naprężeniami a odkształceniami (równania konstytutywne) zasada superpozycji nie obowiązuje.

Na podstawie sprężysto-plastycznej analizy konstrukcji można określić zakresy obciążeń cyklicznych powodujące przemienne uplastycznienie związane ze zjawiskiem niskocyklowego zmęczenia. W przypadku obciążeń monotonicznych można wyróżnić zagadnienia oceny zmiany kształtów geometrycznych elementów konstrukcyjnych wywołanej odkształceniami plastycznymi oraz oceny możliwości powstania przegubów plastycznych, czyli osiągnięcie przez konstrukcje stanu nośności granicznej. Analityczne rozwiązanie zagadnienia nośności granicznej jest w większości problemów o znaczeniu praktycznym bardzo trudne. Stąd często stosuje się metody przybliżone lub numeryczne.

Zależność pomiędzy wektorem przemieszczeń węzłowych \mathbf{q} a wektorem obciążenia \mathbf{F} w MES można w ogólnym przypadku przedstawić w postaci:

$$\mathbf{K} \left(\mathbf{q} \right) \mathbf{q} = \mathbf{F} \tag{6.11.1}$$

gdzie: **K**(**q**) jest macierzą, której współczynniki zależą od deformacji wywołującej stany plastyczne w konstrukcji.

Zależność tą dla umownego jednego parametru q można przedstawić w postaci wykresu pokazanego na rys.6.11.1. Linearyzując układ równań (6.11.1) wokół dowolnego położenia równowagi \mathbf{q}_{o} otrzymamy równanie przyrostowe w postaci:

$$\mathbf{F} = \mathbf{F}(\mathbf{q}_0) + \mathbf{K}_{\mathrm{T}} \, \mathbf{d}\mathbf{q} \tag{6.11.2}$$

gdzie: $K_T = \frac{\partial F}{\partial q} = \int_V B^{0T} D_T B^0 dV$ jest styczną macierzą sztywności, macierz B^o opisuje związek

pomiędzy składowymi stanu odkształcenia ε a wektorem parametrów węzłowych q ($\varepsilon = B^0 q$). Macierz **D**_r okraślamy z zależności $D_{\rm r} = \frac{\partial \sigma}{\partial q}$ gdzie σ sa składowymi stanu papreżenia

Macierz **D**_T określamy z zależności $D_T = \frac{\partial \sigma}{\partial \varepsilon}$ gdzie σ są składowymi stanu naprężenia. Zakładając warunek plastyczności w postaci:

$$R = \sigma_{red} - R_e(\chi) = 0 \tag{6.11.3}$$

gdzie: σ_{red} są naprężeniami zredukowanymi Hubera-Misesa, $R_e(\chi)$ – granicą plastyczności, oraz stowarzyszone prawo płynięcia:

$$d\varepsilon^{p} = d\lambda \frac{\partial R}{\partial \sigma}$$
(6.11.4)

gdzie: $d\varepsilon^p$ jest przyrostem odkształceń plastycznych, $d\lambda$ – stałą proporcjonalności, macierz D_T można określić z zależności:

$$D_{T} = D_{ep} = D - D \frac{\partial F}{\partial \sigma}^{T} \frac{\partial F}{\partial \sigma} D \left[A + \frac{\partial F}{\partial \sigma} D \frac{\partial F}{\partial \sigma}^{T} \right]^{-1}$$
(6.11.5)

gdzie: **D** jest macierzą stałych sprężystych natomiast $A = E_u$ – modułem umocnienia po przekroczeniu granicy plastyczności. Sprężysto-plastyczny model materiału opisany powyższymi zależnościami pokazany jest na rys. 6.11.2.

Rys. 6.11.1. Przykładowa zależność pomiędzy wektorem obciążenia a przemieszczeniami węzłowymi dla jednego stopnia swobody

Rys. 6.11.2. Sprężysto-plastyczny model materiału z umocnieniem

Nieliniowy układ równań (6.11.1), (6.11.2) rozwiązuje się zwykle za pomocą technik iteracyjnych. Jedną z częściej używanych metod iteracyjnych jest metoda Newtona-Raphsona, której idea opisana jest zależnościami (6.11.6) natomiast schemat działania pokazuje rys. 6.11.3.

Rys. 6.11.3. Jednowymiarowy schemat działania metody iteracyjnej Newtona-Raphsona

6.11.2. Rozwiązywane zagadnienie

Określić stany sprężysto-plastyczne w belce zginanej oraz rozciąganej tarczy z otworem.

Belka zginana

Przeprowadzić analizę nośności granicznej belki o przekroju prostokątnym o grubości b = 1 mm, wysokości h = 20 mm i długości l = 200 mm. Belka jest przegubowo podparta na obu końcach (rys.6.11.4a), wykonana z materiału idealnie sprężysto-plastycznego ($R_e = 250 \text{ MPa}$), poddana działaniu obciążenia ciągłego q. Wyznaczyć graniczną wartość obciążenia ciągłego q^s oraz określić strefę plastyczną dla $q^0 = 0.9q^s$.

Moment graniczny (dla którego następuje pełne uplastycznienie) dla przekroju prostokątnego możemy wyznaczyć z zależności [2]:

$$M_y^g = \frac{bh^2}{4} R_e = 25000 \text{ Nmm}$$
 (6.11.7)

Rozkład momentu gnącego M_y w układzie związanym ze środkiem belki (rys.6.11.4b) można opisać zależnością:

$$M_{y} = \frac{q}{2} \left(\frac{l^2}{4} - x^2 \right)$$
(6.11.8)

Porównując (6.11.7) i (6.11.8) dla x=0 otrzymamy:

$$q^{g} = \frac{8M_{y}^{g}}{l^{2}} = 5 \text{ N/mm}, \qquad q^{0} = 0,9q^{g} = 4,5 \text{ N/mm}$$
 (6.11.9)

Rys. 6.11.4. Rozkład stref sprężystych i plastycznych w belce przegubowo podpartej

Przyrównując wyrażenie (6.11.8) do zależności opisującej moment zginający w belce o przekroju prostokątnym w stanie sprężysto-plastycznym [2] dostaniemy:

$$\frac{q^{0}}{2} \left(\frac{l^{2}}{4} - x^{2} \right) = \frac{bh^{2} R_{e}}{12} \left[3 - \left(\frac{2z_{g}}{h} \right)^{2} \right]$$
(6.11.10)

Z tej zależności możemy wyznaczyć współrzędną z_g rozgraniczającą strefy plastyczne i sprężystą, która jest hiperbolą (rys.6.11.4a) o równaniu:

$$z_{g} = \sqrt{\frac{3}{4}} \left(h^{2} - \frac{2q^{0} \left(\frac{l^{2}}{4} - x^{2} \right)}{b R_{e}} \right) = \sqrt{0,003x^{2} + 30}$$
(6.11.11)

W przypadku wyczerpania nośności granicznej hiperbole przechodzą w swe asymptoty (rys.6.11.4a)

$$z_g = \pm \sqrt{3} \frac{h}{l} x = \pm 0.173 x \,. \tag{6.11.12}$$

Wybrane wyniki analizy MES są przedstawione na rys.6.11.5.

Tarcza rozciągana

Wyznaczyć rozkłady naprężeń w rozciąganej, a następnie odciążonej tarczy z otworem (rys.6.11.6a). Tarcza o wymiarach 200mm×400mm z centralnie wyciętym otworem o średnicy 60 mm ma grubość 1mm. Wykonana jest ze stali o własnościach mechanicznych: $E = 2,06 * 10^5 \text{ N/mm}^2$, v = 0,29, $R_e = 320 \text{MPa}$, $E_u = 10000 \text{ N/mm}^2$. Tarcza jest rozciągana na górnych brzegach naprężeniami równymi p = 210 MPa, a następnie odciążona.

Rys. 6.11.5. Belka zginana: a) model MES 1/2 belki, b) naprężenia normalne (zgięciowe), c) naprężenia zredukowane

Rys. 6.11.6. Tarcza z otworem poddana rozciąganiu: a) model MES ¼ tarczy, b) naprężenia zredukowane, c) naprężenia zredukowane resztkowe po odciążeniu

6.11.3. Typowy przebieg analizy numerycznej

6.11.3.1. Preprocessor

A. Zdefiniowanie powierzchni odpowiadających analizowanym kształtom tarcz

B. Określenie modelu i własności mechanicznych materiału

Oprócz własności sprężystych materiału: moduł Younga E i liczba Poissona υ (rys. 6.11.7) należy wybrać model sprężysto-plastyczny oraz określić jego parametry np. granicę plastyczności R_e oraz moduł umocnienia E_u (rys. 6.11. 8).

Preprocessor Element Tune	💦 Define Material Model Behavior	
Element Type Element Type Element Type Element Type	Material Edit Favorite Help	
Material Props Material Library	Material Models Defined	▲ Linear Isotropic Properties for Material Number 1
Temperature Units Electromag Units Convert ALPx Change Mat Num Failure Criteria Read from File Sections Modeling Meshing	🐼 Material Model Number 1	Linear Isotropic Material Properties for Material Number 1 T1 Temperatures 0 EX 2E+005 PRXY 0.29
Checking Ctrls Ctrls Cupling Ctrls Coupling / Ceqn Multi-field Set Up Cuds Physics	<	Add Temperature Delete Temperature Graph

Toolbar							
Toolbar	A Define Material Model Behavior						
SAVE_DB RESUM_DB	Material Edit Favorite Help						
	Material Models Defined	Material Models Available					
Main Menu 🛞	Matorial Model Number 1	A Nonlinear					
Preferences							
Preprocessor	S Linear isotropic						
Element Type		Directicity Overs Filling					
Real Constants		8 Plasticity Curve Fitting					
Material Library							
Temperature Un		Isotropic Hardening Plasticity					
Electromag Unit		Seneralized Anisotropic Hill Pote					
Material Models		Kinematic Hardening Plasticity					
Convert ALPx		B Mises Plasticity					
E Failure Criteria		8 Bilinear					
Write to File		Ø Multilinear (Fixed table					
Read from File	A Bilinear Kinematic Hardening for Material Number 1						
Sections	,						
H Moching	Bilinear Kinematic Hardening for Material Number 1						
E Checking Ctrls							
Numbering Ctrls	Stress-Strain Ontions						
Archive Model	Stress-Strain Options	Rice's Hard. Rule					
Coupling / Ceqn Dubi fold Cot Us							
E Loads	T1						
Physics	T						
Path Operations	Temperature						
Solution	Yield Stss 320						
General Postproc TimeHist Postpro	Tang Mods 1000						
E ROM Tool							
Prob Design							
Radiation Opt							
Session Editor	Add Temperature Delete Temperature A	dd Row Delete Row Graph					
E 1 11/311							
		OK Cancel Help					

Rys. 6.11.8. Określenie własności plastycznych materiału (granica plastyczności, moduł umocnienia)

- C. Wybranie elementu typu PLANE182
- D. Podział na elementy skończone powierzchni tarcz (rys. 6.11.5a, 6.11.6a)

6.11.3.2. Solution

A. Wybór opcji rozwiązania (Solution Options) (rys. 6.11.9)

■ Preferences	🔥 New Ana	lysis			23
Solution Analysis Type	[ANTYPE]	Type of analysis			
New Analysis				Static	
Restart				O Modal	
				C Harmonic	
Load Step Opts				C Transient	
SE Management (CMS) Results Tracking				C Spectrum	
Solve				C Fires Bushlins	
⊞ Manual Rezoning				C Eigen Buckling	
ADAMS Connection				Substructuring/CMS	
Diagnostics Unabridged Menu		OK	Canaal	Holp	
General Postproc			Cancer	neip	
⊞ TimeHist Postpro					

Rys. 6.11.9. Określenie typu rozwiązywanego zadania (rozwiązanie statyki)

Rozległe stany plastyczne mogą powodować konieczność uwzględnienia w obliczeniach dużych deformacji (rys. 6.11.10).

Main Menu	▲ Solution Controls	×
Main Menu Image: Preprocessor Image: Sorreconstructure Image: Sorreconstructure <td>▲ Solution Controls Basic Transient Sol'n Options Nonlinear Advanced NL ▲ Analysis Options Large Displacement Static Calculate prestress effects Calculate prestress Calculate prestress effects Calcu</td> <td></td>	▲ Solution Controls Basic Transient Sol'n Options Nonlinear Advanced NL ▲ Analysis Options Large Displacement Static Calculate prestress effects Calculate prestress Calculate prestress effects Calcu	
	DK Cancel He	lp

Rys. 6.11.10. Uwzględnienie dużych deformacji (ugięć) w analizie statycznej

B. Wprowadzenie warunków brzegowych i obciążenia

Warunki brzegowe oraz obciążenia mogą być przykładane do konstrukcji w oddzielnych krokach i ulegać zmianie. Ze względu na nieliniową zależność między deformacjami a obciążeniem wskazane jest, żeby obciążenie przykładać stopniowo w możliwie dużej liczbie kroków lub podkroków. Każdy krok może być podzielony na dowolną liczbę równych podkroków. W zagadnieniach statycznych przypisany poszczególnym krokom czas spełnia tylko rolę parametru. Wartości obciążeń w krokach określa się tak jak w zagadnieniach liniowych. Schemat definiowania obciążeń przedstawiony został na rysunku 6.11.11.

Rys. 6.11.11. Schemat określania historii obciążenia w programie ANSYS - kroki (steps) i podkroki (substeps)

Niezbędne parametry opisujące pojedynczy krok są następujące:

C. Określenie czasu oraz liczby podkroków w kroku (rys. 6.11.12)

Main Menu	∧ Solution Controls	x
 ➡ Preferences ➡ Preprocessor ➡ Solution ➡ Analysis Type ➡ New Analysis ➡ Restart ➡ Solin Controls ➡ Define Loads ➡ Load Step Opts ➡ S E Management (CMS) ➡ Results Tracking ➡ Solve ➡ Manual Rezoning ➡ Multi-field Set Up ➡ ADAMS Connection ➡ Diagnostics ➡ Unabridged Menu ➡ General Postproc ➡ TimeHist Postpro ➡ Rodiation Opt ➡ Session Editor ➡ Finish 	Basic Transient Sol'n Options Nonlinear Advanced NL Analysis Options	
	OK Cancel Help	

Rys. 6.11.12. Określenie czasu, liczby podkroków, itd. dla kroku

D. Określenie kryteriów zbieżności procesu iteracyjnego rozwiązania (rys. 6.12.13)

L	Analysis Type New Analysis	💦 Defau	ılt Nonlinear C	onvergence Criteria					×
L	Restart	Defa	ult Criteria to	be Used:					
L	Sol'n Controls	Labe	I.	Ref. Value	Tolerance	Norm	Min. Ref.		
L	Load Step Opts	F		calculated	1.00000E-03	L2	1.0		
L	SE Management (CN								
L	Results Tracking								
L	⊞ Solve ⊞ Manual Rezoning								
L	Multi-field Set Up								
L	ADAMS Connection Diagnostics								
L	Unabridged Menu								
1	General Postproc								
1	ROM Tool								
1	Prob Design								
1	Radiation Opt								
]	Session Editor								
	1 mon								
L			A	vdd		Edit		Delete	
					-				
				Close				Help	

Rys. 6.11.13. Określenie kryteriów zbieżności procesu iteracyjnego dla kroku

E. Określenie maksymalnej liczby iteracji w podkroku (rys. 6.11.14)

Main Monu	∧ Solution Controls	×
Preferences Preprocessor Selution	Basic Transient Sol'n Options Nonlinear Advanced NL	
 □ Solution □ Analysis Type □ New Analysis □ Restart □ Solⁱⁿ Controls □ Define Loads □ Load Step Opts □ SE Management (CMS) □ Results Tracking □ Solve □ Manual Rezoning □ Multi-field Set Up □ ADAMS Connection □ Diagnostics □ Unabridged Menu □ General Postproc □ TimeHist Postpro □ ROM Tool □ Prob Design □ Radiation Opt □ Session Editor □ Finish 	Nonlinear Options Line search Prog Chosen DOF solution Prog Chosen predictor Imits on physical values to perform bisection: VT Speedup Off Equilibrium Iterations 0.1 Maximum number of 25 0 iterations 10000000 Points per cycle 13 Creep Option Cutback according to predicted number of iterations Set convergence criteria Always iterate to 25 equilibrium iterations	
	OK Cancel Help	

Rys .6.11.14. Określenie liczby iteracji procesu iteracyjnego dla podkroków w kroku

F. Zapis obciążenia i parametrów kroku w postaci zbioru dyskowego (rys. 6.11.15)

Load Step Opts ① ① ① ① ① Utput Ctrls	🔥 Write Load Step File	83
	[LSWRITE] Write Load Step File (Jobname.Sn) LSNUM Load step file number n	
	OK Apply Cancel Help	

Rys. 6.11.15. Zapis obciążenia i parametrów kroku na zbiór (file.001)

G. Uruchomienie obliczeń

Po zdefiniowaniu obciążenia i ustaleniu podstawowych parametrów analizy dla wszystkich kroków można uruchomić obliczenia np. jednocześnie dla wszystkich przygotowanych kroków (rys. 6.11.16). W pierwszym kroku tarcza była obciążona na brzegu natomiast w drugim odciążona.

	A Solve Load Step Files	23
🖬 Results Tracking	[LSSOLVE] Solve by Reading Data from Load Step (LS) Files	
Solve Current LS	LSMIN Starting LS file number 1	
From LS Files	LSMAX Ending LS file number 2	
	LSINC File number increment	
 ⇒ Diagnostics ⇒ Unabridged Menu ⇒ General Postproc ⇒ TimeHist Postpro 	OK Cancel Help	

Rys. 6.11.16. Uruchomienie obliczeń dla wybranej (uprzednio zdefiniowanej i zapisanej) sekwencji kroków obciążenia

6.11.3.3. General postprocessor

Prezentacja wyników w postaci map przemieszczeń i naprężeń oraz wykresów może być przeprowadzona dla każdego kroku i podkroku obciążenia.

6.11.4. Interpretacja wyników. Zadania do wykonania

- 1. Określić stan naprężeń w modelach pokazanych w punkcie 6.11.2 dla różnych modeli sprężystoplastycznych materiału oraz porównać wyniki analiz.
- 2. Określić stan naprężeń w tarczach pokazanych w punkcie 6.11.2 modelowanych jako ustroje trójwymiarowe dla różnych modeli sprężysto-plastycznych materiału oraz porównać wyniki analiz.